Quantifying Uncertainty in Multiscale Heat Conduction Calculations

نویسندگان

  • Prabhakar Marepalli
  • Jayathi Y. Murthy
  • Bo Qiu
  • Xiulin Ruan
چکیده

In recent years, there has been interest in employing atomistic computations to inform macroscale thermal transport analyses. In heat conduction simulations in semiconductors and dielectrics, for example, classical molecular dynamics (MD) is used to compute phonon relaxation times, from which material thermal conductivity may be inferred and used at the macroscale. A drawback of this method is the noise associated with MD simulation (here after referred to as MD noise), which is generated due to the possibility of multiple initial configurations corresponding to the same system temperature. When MD is used to compute phonon relaxation times, the spread may be as high as 20%. In this work, we propose a method to quantify the uncertainty in thermal conductivity computations due to MD noise, and its effect on the computation of the temperature distribution in heat conduction simulations. Bayesian inference is used to construct a probabilistic surrogate model for thermal conductivity as a function of temperature, accounting for the statistical spread in MD relaxation times. The surrogate model is used in probabilistic computations of the temperature field in macroscale Fourier conduction simulations. These simulations yield probability density functions (PDFs) of the spatial temperature distribution resulting from the PDFs of thermal conductivity. To allay the cost of probabilistic computations, a stochastic collocation technique based on generalized polynomial chaos (gPC) is used to construct a response surface for the variation of temperature (at each physical location in the domain) as a function of the random variables in the thermal conductivity model. Results are presented for the spatial variation of the probability density function of temperature as a function of spatial location in a typical heat conduction problem to establish the viability of the method. [DOI: 10.1115/1.4027348]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to the Slide Modeling Method for the Efficient Solution of Heat Conduction Calculations

Determination of the maximum temperature and its location is the matter of the greatest importance in many technological and scientific engineering applications. In terms of numerical calculations of the heat conduction equation by using uniform mesh increments in space, large computational cost is sometimes countered. However, adaptive grid refinement method could be computationally efficient ...

متن کامل

First-Principles Approach to Heat and Mass Transfer Effects in Model Catalyst Studies

We assess heat and mass transfer limitations in in situ studies of model catalysts with a first-principles based multiscale modeling approach that integrates a detailed description of the surface reaction chemistry and the macro-scale flow structures. Using the CO oxidation at RuO2(110) as a prototypical example we demonstrate that factors like a suppressed heat conduction at the backside of th...

متن کامل

Non-Probabilistic Uncertainty Analysis of Analytical and Numerical Solution of Heat Conduction

Fuzzy set theory is applied to quantify the non-probabilistic uncertainty alternatively termed as epistemic uncertainty. An algorithm “Fuzzy Centered Radius” has been developed for quantification of epistemic uncertainty. Uncertainty analysis is also carried out using fuzzy vertex method. Analytical solution of one dimension heat conduction and numerical solution of heat removal from circular f...

متن کامل

Thermoelastic Response of a Rotating Hollow Cylinder Based on Generalized Model with Higher Order Derivatives and Phase-Lags

Generalized thermoelastic models have been developed with the aim of eliminating the contradiction in the infinite velocity of heat propagation inherent in the classical dynamical coupled thermoelasticity theory. In these generalized models, the basic equations include thermal relaxation times and they are of hyperbolic type. Furthermore, Tzou established the dual-phase-lag heat conduction theo...

متن کامل

Analysis of Thermal-Bending Stresses in a Simply Supported Annular Sector Plate

The present article deals with the analysis of thermal-bending stresses in a heated thin annular sector plate with simply supported boundary condition under transient temperature distribution using Berger’s approximate methods. The sectional heat supply is on the top face of the plate whereas the bottom face is kept at zero temperature. In this study, the solution of heat conduction is obtained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014